Cargando…
MFR-DTA: a multi-functional and robust model for predicting drug–target binding affinity and region
MOTIVATION: Recently, deep learning has become the mainstream methodology for drug–target binding affinity prediction. However, two deficiencies of the existing methods restrict their practical applications. On the one hand, most existing methods ignore the individual information of sequence element...
Autores principales: | Hua, Yang, Song, Xiaoning, Feng, Zhenhua, Wu, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900210/ https://www.ncbi.nlm.nih.gov/pubmed/36708000 http://dx.doi.org/10.1093/bioinformatics/btad056 |
Ejemplares similares
-
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
GANsDTA: Predicting Drug-Target Binding Affinity Using GANs
por: Zhao, Lingling, et al.
Publicado: (2020) -
DataDTA: a multi-feature and dual-interaction aggregation framework for drug–target binding affinity prediction
por: Zhu, Yan, et al.
Publicado: (2023) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023) -
GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery
por: Lin, Shaofu, et al.
Publicado: (2022)