Cargando…
Predicting origin for bone metastatic cancer using deep learning-based pathology
Autores principales: | Fang, Mengjie, Wang, Zipei, Tian, Jie, Dong, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900359/ https://www.ncbi.nlm.nih.gov/pubmed/36716573 http://dx.doi.org/10.1016/j.ebiom.2023.104449 |
Ejemplares similares
-
Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics
por: Fang, Mengjie, et al.
Publicado: (2022) -
An accurate prediction of the origin for bone metastatic cancer using deep learning on digital pathological images
por: Zhu, Lianghui, et al.
Publicado: (2022) -
Weakly-supervised deep learning models in computational pathology
por: Augustine, Tanya N.
Publicado: (2022) -
Offline: The origins story—towards a Deep Ecology
por: Horton, Richard
Publicado: (2022) -
Deep learning shapes single-cell data analysis
por: Ma, Qin, et al.
Publicado: (2022)