Cargando…
Fabrication and validation of an LED array microscope for multimodal, quantitative imaging
The combination of multiple imaging modalities in a single microscopy system can enable new insights into biological processes. In this work, we describe the construction and rigorous characterization of a custom microscope with multimodal imaging in a single, cost-effective system. Our design utili...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900438/ https://www.ncbi.nlm.nih.gov/pubmed/36756350 http://dx.doi.org/10.1016/j.ohx.2023.e00399 |
Sumario: | The combination of multiple imaging modalities in a single microscopy system can enable new insights into biological processes. In this work, we describe the construction and rigorous characterization of a custom microscope with multimodal imaging in a single, cost-effective system. Our design utilizes advances in LED technology, robotics, and open-source software, along with existing optical components and precision optomechanical parts to offer a modular and versatile design. This microscope is operated using software written in Arduino and Python and has the ability to run multi-day automated imaging experiments when placed inside of a cell culture incubator. Additionally, we provide and demonstrate methods to validate images taken in brightfield and darkfield, along with validation and optimization for differential phase contrast (DPC) quantitative phase imaging. |
---|