Cargando…

A new means of energy supply driven by terahertz photons recovers related neural activity

Continuous and efficient energy capture represents a long-sought dream of mankind. The brain is a major energy-consuming organ; an adult brain accounts for about 2% of the body weight but consumes about 20% of the body’s energy. However, it is still unclear how the brain achieves efficient use of en...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Xiaoxuan, Gao, Mingxin, Chang, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900506/
https://www.ncbi.nlm.nih.gov/pubmed/36756372
http://dx.doi.org/10.1016/j.isci.2023.105979
Descripción
Sumario:Continuous and efficient energy capture represents a long-sought dream of mankind. The brain is a major energy-consuming organ; an adult brain accounts for about 2% of the body weight but consumes about 20% of the body’s energy. However, it is still unclear how the brain achieves efficient use of energy. Here, using nerve cells as test subjects, we found that THz photons with a specific frequency can effectively restore the reduced frequency of action potentials caused by inadequate ATP supply, which has been demonstrated as a novel mode of energy supply, present photons emission at a particular frequency from the breaking of the ATP phosphate bond. This energy supply mechanism may play a key biophysical basis for explaining how the body efficiently obtains energy, because the quantized chemical reactions could have a high energy efficiency and ultrahigh selectivity compared with the traditional thermochemistry and photochemistry.