Cargando…
Feature selection of pre-trained shallow CNN using the QLESCA optimizer: COVID-19 detection as a case study
According to the World Health Organization, millions of infections and a lot of deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Since 2020, a lot of computer science researchers have used convolutional neural networks (CNNs) to develop interesting frame...
Autores principales: | Hamad, Qusay Shihab, Samma, Hussein, Suandi, Shahrel Azmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900578/ https://www.ncbi.nlm.nih.gov/pubmed/36777882 http://dx.doi.org/10.1007/s10489-022-04446-8 |
Ejemplares similares
-
TSR-YOLO: A Chinese Traffic Sign Recognition Algorithm for Intelligent Vehicles in Complex Scenes
por: Song, Weizhen, et al.
Publicado: (2023) -
Finger Vein Recognition Using Local Line Binary Pattern
por: Rosdi, Bakhtiar Affendi, et al.
Publicado: (2011) -
Arrangements of Resting State Electroencephalography as the Input to Convolutional Neural Network for Biometric Identification
por: Lai, Chi Qin, et al.
Publicado: (2019) -
Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons
por: Zhou, Baohua, et al.
Publicado: (2022) -
Identification and Classification of Lungs Focal Opacity Using CNN Segmentation and Optimal Feature Selection
por: Javed, Muhammad Ashar, et al.
Publicado: (2023)