Cargando…
CELL INSTANCE SEGMENTATION VIA MULTI-SCALE NON-LOCAL CORRELATION
For cell instance segmentation on Electron Microscopy (EM) images, state-of-the-art methods either conduct pixel-wise classification or follow a detection and segmentation manner. However, both approaches suffer from the enormous cell instances of EM images where cells are tightly close to each othe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900774/ https://www.ncbi.nlm.nih.gov/pubmed/36747649 http://dx.doi.org/10.1101/2023.01.24.525387 |
Sumario: | For cell instance segmentation on Electron Microscopy (EM) images, state-of-the-art methods either conduct pixel-wise classification or follow a detection and segmentation manner. However, both approaches suffer from the enormous cell instances of EM images where cells are tightly close to each other and show inconsistent morphological properties and/or homogeneous appearances. This fact can easily lead to over-segmentation and under-segmentation problems for model prediction, i.e., falsely splitting and merging adjacent instances. In this paper, we propose a novel approach incorporating non-local correlation in the embedding space to make pixel features distinct or similar to their neighbors and thus address the over- and under-segmentation problems. We perform experiments on five different EM datasets where our proposed method yields better results than several strong baselines. More importantly, by using non-local correlation, we observe fewer false separations within one cell and fewer false fusions between cells. |
---|