Cargando…

in vivo quantitative FRET small animal imaging: intensity versus lifetime-based FRET

Förster Resonance Energy Transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2–10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being i...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Jason T., Sinsuebphon, Nattawut, Rudkouskaya, Alena, Michalet, Xavier, Intes, Xavier, Barroso, Margarida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900789/
https://www.ncbi.nlm.nih.gov/pubmed/36747671
http://dx.doi.org/10.1101/2023.01.24.525411
Descripción
Sumario:Förster Resonance Energy Transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2–10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the 3-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated ICCD, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product [Formula: see text] of the FRET efficiency [Formula: see text] and the fraction of donor molecules involved in FRET, [Formula: see text] , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of near infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required 9 measurements (6 of which are used for calibration) acquired from three mice, MFLI FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.