Cargando…

Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy

Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozy...

Descripción completa

Detalles Bibliográficos
Autores principales: Loiben, Alexander M., Chien, Wei-Ming, Friedman, Clayton E., Chao, Leslie S-L., Weber, Gerhard, Goldstein, Alex, Sniadecki, Nathan, Murry, Charles E., Yang, Kai-Chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900838/
https://www.ncbi.nlm.nih.gov/pubmed/36747800
http://dx.doi.org/10.1101/2023.01.24.525458
_version_ 1784882925735510016
author Loiben, Alexander M.
Chien, Wei-Ming
Friedman, Clayton E.
Chao, Leslie S-L.
Weber, Gerhard
Goldstein, Alex
Sniadecki, Nathan
Murry, Charles E.
Yang, Kai-Chun
author_facet Loiben, Alexander M.
Chien, Wei-Ming
Friedman, Clayton E.
Chao, Leslie S-L.
Weber, Gerhard
Goldstein, Alex
Sniadecki, Nathan
Murry, Charles E.
Yang, Kai-Chun
author_sort Loiben, Alexander M.
collection PubMed
description Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7(E848G/+) increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7 E848G HCM patients. Interestingly, MYH7(E848G/+) cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7(E848G/+) cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis plays an important role in the MYH7(E848G/+) HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.
format Online
Article
Text
id pubmed-9900838
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-99008382023-02-07 Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy Loiben, Alexander M. Chien, Wei-Ming Friedman, Clayton E. Chao, Leslie S-L. Weber, Gerhard Goldstein, Alex Sniadecki, Nathan Murry, Charles E. Yang, Kai-Chun bioRxiv Article Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7(E848G/+) increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7 E848G HCM patients. Interestingly, MYH7(E848G/+) cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7(E848G/+) cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis plays an important role in the MYH7(E848G/+) HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction. Cold Spring Harbor Laboratory 2023-01-25 /pmc/articles/PMC9900838/ /pubmed/36747800 http://dx.doi.org/10.1101/2023.01.24.525458 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Loiben, Alexander M.
Chien, Wei-Ming
Friedman, Clayton E.
Chao, Leslie S-L.
Weber, Gerhard
Goldstein, Alex
Sniadecki, Nathan
Murry, Charles E.
Yang, Kai-Chun
Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy
title Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy
title_full Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy
title_fullStr Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy
title_full_unstemmed Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy
title_short Cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy
title_sort cardiomyocyte apoptosis contributes to contractile dysfunction in stem cell model of myh7 e848g hypertrophic cardiomyopathy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900838/
https://www.ncbi.nlm.nih.gov/pubmed/36747800
http://dx.doi.org/10.1101/2023.01.24.525458
work_keys_str_mv AT loibenalexanderm cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT chienweiming cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT friedmanclaytone cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT chaolesliesl cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT webergerhard cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT goldsteinalex cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT sniadeckinathan cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT murrycharlese cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy
AT yangkaichun cardiomyocyteapoptosiscontributestocontractiledysfunctioninstemcellmodelofmyh7e848ghypertrophiccardiomyopathy