Cargando…

A Comparison of Lossless Compression Methods in Microscopy Data Storage Applications

Modern high-throughput microscopy methods such as light-sheet imaging and electron microscopy are capable of producing petabytes of data inside of a single experiment. Storage of these large images, however, is challenging because of the difficulty of moving, storing, and analyzing such vast amounts...

Descripción completa

Detalles Bibliográficos
Autores principales: Walker, Logan A., McGlothlin, Maggie, Li, Ye, Cai, Dawen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900847/
https://www.ncbi.nlm.nih.gov/pubmed/36747668
http://dx.doi.org/10.1101/2023.01.24.525380
Descripción
Sumario:Modern high-throughput microscopy methods such as light-sheet imaging and electron microscopy are capable of producing petabytes of data inside of a single experiment. Storage of these large images, however, is challenging because of the difficulty of moving, storing, and analyzing such vast amounts of data, which is often collected at very high data rates (>1GBps). In this report, we provide a comparison of the performance of several compression algorithms using a collection of published and unpublished datasets including confocal, fMOST, and pathology images. We also use simulated data to demonstrate the efficiency of each algorithm as image content or entropy increases. As a result of this work, we recommend the use of the BLOSC algorithm combined with ZSTD for various microscopy applications, as it produces the best compression ratio over a collection of conditions.