Cargando…
Network structure influences the strength of learned neural representations
Human experience is built upon sequences of discrete events. From those sequences, humans build impressively accurate models of their world. This process has been referred to as graph learning, a form of structure learning in which the mental model encodes the graph of event-to-event transition prob...
Autores principales: | Kahn, Ari E., Szymula, Karol, Loman, Sophie, Haggerty, Edda B., Nyema, Nathaniel, Aguirre, Geoffrey K., Bassett, Dani S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900848/ https://www.ncbi.nlm.nih.gov/pubmed/36747703 http://dx.doi.org/10.1101/2023.01.23.525254 |
Ejemplares similares
-
Abstract representations of events arise from mental errors in learning and memory
por: Lynn, Christopher W., et al.
Publicado: (2020) -
Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning
por: Stiso, Jennifer, et al.
Publicado: (2022) -
Human Learning of Hierarchical Graphs
por: Xia, Xiaohuan, et al.
Publicado: (2023) -
Optimizing the human learnability of abstract network representations
por: Qian, William, et al.
Publicado: (2022) -
Representational Distance Learning for Deep Neural Networks
por: McClure, Patrick, et al.
Publicado: (2016)