Cargando…
Remapping in a recurrent neural network model of navigation and context inference
Neurons in navigational brain regions provide information about position, orientation, and speed relative to environmental landmarks. These cells also change their firing patterns (“remap”) in response to changing contextual factors such as environmental cues, task conditions, and behavioral state,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900889/ https://www.ncbi.nlm.nih.gov/pubmed/36747825 http://dx.doi.org/10.1101/2023.01.25.525596 |
_version_ | 1784882932425424896 |
---|---|
author | Low, Isabel I.C. Giocomo, Lisa M. Williams, Alex H. |
author_facet | Low, Isabel I.C. Giocomo, Lisa M. Williams, Alex H. |
author_sort | Low, Isabel I.C. |
collection | PubMed |
description | Neurons in navigational brain regions provide information about position, orientation, and speed relative to environmental landmarks. These cells also change their firing patterns (“remap”) in response to changing contextual factors such as environmental cues, task conditions, and behavioral state, which influence neural activity throughout the brain. How can navigational circuits preserve their local computations while responding to global context changes? To investigate this question, we trained recurrent neural network models to track position in simple environments while at the same time reporting transiently-cued context changes. We show that these combined task constraints (navigation and context inference) produce activity patterns that are qualitatively similar to population-wide remapping in the entorhinal cortex, a navigational brain region. Furthermore, the models identify a solution that generalizes to more complex navigation and inference tasks. We thus provide a simple, general, and experimentally-grounded model of remapping as one neural circuit performing both navigation and context inference. |
format | Online Article Text |
id | pubmed-9900889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-99008892023-02-07 Remapping in a recurrent neural network model of navigation and context inference Low, Isabel I.C. Giocomo, Lisa M. Williams, Alex H. bioRxiv Article Neurons in navigational brain regions provide information about position, orientation, and speed relative to environmental landmarks. These cells also change their firing patterns (“remap”) in response to changing contextual factors such as environmental cues, task conditions, and behavioral state, which influence neural activity throughout the brain. How can navigational circuits preserve their local computations while responding to global context changes? To investigate this question, we trained recurrent neural network models to track position in simple environments while at the same time reporting transiently-cued context changes. We show that these combined task constraints (navigation and context inference) produce activity patterns that are qualitatively similar to population-wide remapping in the entorhinal cortex, a navigational brain region. Furthermore, the models identify a solution that generalizes to more complex navigation and inference tasks. We thus provide a simple, general, and experimentally-grounded model of remapping as one neural circuit performing both navigation and context inference. Cold Spring Harbor Laboratory 2023-05-04 /pmc/articles/PMC9900889/ /pubmed/36747825 http://dx.doi.org/10.1101/2023.01.25.525596 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Low, Isabel I.C. Giocomo, Lisa M. Williams, Alex H. Remapping in a recurrent neural network model of navigation and context inference |
title | Remapping in a recurrent neural network model of navigation and context inference |
title_full | Remapping in a recurrent neural network model of navigation and context inference |
title_fullStr | Remapping in a recurrent neural network model of navigation and context inference |
title_full_unstemmed | Remapping in a recurrent neural network model of navigation and context inference |
title_short | Remapping in a recurrent neural network model of navigation and context inference |
title_sort | remapping in a recurrent neural network model of navigation and context inference |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900889/ https://www.ncbi.nlm.nih.gov/pubmed/36747825 http://dx.doi.org/10.1101/2023.01.25.525596 |
work_keys_str_mv | AT lowisabelic remappinginarecurrentneuralnetworkmodelofnavigationandcontextinference AT giocomolisam remappinginarecurrentneuralnetworkmodelofnavigationandcontextinference AT williamsalexh remappinginarecurrentneuralnetworkmodelofnavigationandcontextinference |