Cargando…
Considering dynamic nature of the brain: the clinical importance of connectivity variability in machine learning classification and prediction
The brain connectivity of resting-state fMRI (rs-fMRI) represents an intrinsic state of brain architecture, and it has been used as a useful neural marker for detecting psychiatric conditions as well as for predicting psychosocial characteristics. However, most studies using brain connectivity have...
Autores principales: | Song, Inuk, Lee, Tae-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901018/ https://www.ncbi.nlm.nih.gov/pubmed/36747828 http://dx.doi.org/10.1101/2023.01.26.525765 |
Ejemplares similares
-
Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults
por: Song, Inuk, et al.
Publicado: (2021) -
Sign-Consistency Based Variable Importance for Machine Learning in Brain Imaging
por: Gómez-Verdejo, Vanessa, et al.
Publicado: (2019) -
Performances of whole-brain dynamic and static functional connectivity fingerprinting in machine learning-based classification of major depressive disorder
por: Niu, Heng, et al.
Publicado: (2022) -
Machine learning-based obesity classification considering 3D body scanner measurements
por: Jeon, Seungjin, et al.
Publicado: (2023) -
EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning
por: Cao, Jun, et al.
Publicado: (2022)