Cargando…
scMINER: a mutual information-based framework for identifying hidden drivers from single-cell omics data
The sparse nature of single-cell omics data makes it challenging to dissect the wiring and rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the drivers, referred to as “hidden drivers”, are difficult to identify via conventional expression analysis due to...
Autores principales: | Ding, Liang, Shi, Hao, Qian, Chenxi, Burdyshaw, Chad, Veloso, Joao Pedro, Khatamian, Alireza, Pan, Qingfei, Dhungana, Yogesh, Xie, Zhen, Risch, Isabel, Yang, Xu, Huang, Xin, Yan, Lei, Rusch, Michael, Brewer, Michael, Yan, Koon-Kiu, Chi, Hongbo, Yu, Jiyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901036/ https://www.ncbi.nlm.nih.gov/pubmed/36747874 http://dx.doi.org/10.21203/rs.3.rs-2476875/v1 |
Ejemplares similares
-
scMINER: a mutual information-based framework for identifying hidden drivers from single-cell omics data
por: Ding, Liang, et al.
Publicado: (2023) -
NetBID2 provides comprehensive hidden driver analysis
por: Dong, Xinran, et al.
Publicado: (2023) -
Network Approaches for Dissecting the Immune System
por: Hao Shi, et al.
Publicado: (2020) -
SJARACNe: a scalable software tool for gene network reverse engineering from big data
por: Khatamian, Alireza, et al.
Publicado: (2019) -
Integrome signatures of lentiviral gene therapy for SCID-X1 patients
por: Yan, Koon-Kiu, et al.
Publicado: (2023)