Cargando…
Improving the Prediction of Death from Cardiovascular Causes with Multiple Risk Markers
BACKGROUND: Traditional risk factors including demographics, blood pressure, cholesterol, and diabetes status are successfully able to predict a proportion of cardiovascular disease (CVD) events. Whether including additional routinely measured factors improves CVD prediction is unclear. To determine...
Autores principales: | Wang, Xin, Bakulski, Kelly M., Fansler, Samuel, Mukherjee, Bhramar, Park, Sung Kyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901052/ https://www.ncbi.nlm.nih.gov/pubmed/36747865 http://dx.doi.org/10.1101/2023.01.21.23284863 |
Ejemplares similares
-
Predicting cumulative lead (Pb) exposure using the Super Learner algorithm
por: Wang, Xin, et al.
Publicado: (2023) -
Does Information on Blood Heavy Metals Improve Cardiovascular Mortality Prediction?
por: Wang, Xin, et al.
Publicado: (2019) -
Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES
por: Park, Sung Kyun, et al.
Publicado: (2017) -
Bone Lead Levels and Risk of Incident Primary Open-Angle Glaucoma: The VA Normative Aging Study
por: Wang, Weiye, et al.
Publicado: (2018) -
Statistical strategies for constructing health risk models with multiple
pollutants and their interactions: possible choices and comparisons
por: Sun, Zhichao, et al.
Publicado: (2013)