Cargando…
Predicting Physiological Response in Heart Failure Management: A Graph Representation Learning Approach using Electronic Health Records
Heart failure management is challenging due to the complex and heterogenous nature of its pathophysiology which makes the conventional treatments based on the “one size fits all” ideology not suitable. Coupling the longitudinal medical data with novel deep learning and network-based analytics will e...
Autores principales: | Chowdhury, Shaika, Chen, Yongbin, Wen, Andrew, Ma, Xiao, Dai, Qiying, Yu, Yue, Fu, Sunyang, Jiang, Xiaoqian, Zong, Nansu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901060/ https://www.ncbi.nlm.nih.gov/pubmed/36747787 http://dx.doi.org/10.1101/2023.01.27.23285129 |
Ejemplares similares
-
Artificial Intelligence-based Efficacy Prediction of Phase 3 Clinical Trial for Repurposing Heart Failure Therapies
por: Zong, Nansu, et al.
Publicado: (2023) -
The Implication of Latent Information Quality to the Reproducibility of Secondary Use of Electronic Health Records
por: Fu, Sunyang, et al.
Publicado: (2022) -
BETA: a comprehensive benchmark for computational drug–target prediction
por: Zong, Nansu, et al.
Publicado: (2022) -
Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer’s Disease
por: Bhattarai, Kritib, et al.
Publicado: (2023) -
Computational drug repurposing based on electronic health records: a scoping review
por: Zong, Nansu, et al.
Publicado: (2022)