Cargando…
Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer’s Disease
BACKGROUND: Alzheimer’s Disease (AD) is a progressive neurological disorder with no specific curative medications. While only a few medications are approved by FDA (i.e., donepezil, galantamine, rivastigmine, and memantine) to relieve symptoms (e.g., cognitive decline), sophisticated clinical skills...
Autores principales: | Bhattarai, Kritib, Das, Trisha, Kim, Yejin, Chen, Yongbin, Dai, Qiying, Li, Xiaoyang, Jiang, Xiaoqian, Zong, Nansu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901063/ https://www.ncbi.nlm.nih.gov/pubmed/36747733 http://dx.doi.org/10.1101/2023.01.26.23285064 |
Ejemplares similares
-
Using artificial intelligence to learn optimal regimen plan for Alzheimer’s disease
por: Bhattarai, Kritib, et al.
Publicado: (2023) -
Leveraging multi-source to resolve inconsistency across pharmacogenomic datasets in drug sensitivity prediction
por: Das, Trisha, et al.
Publicado: (2023) -
Artificial Intelligence-based Efficacy Prediction of Phase 3 Clinical Trial for Repurposing Heart Failure Therapies
por: Zong, Nansu, et al.
Publicado: (2023) -
Predicting Physiological Response in Heart Failure Management: A Graph Representation Learning Approach using Electronic Health Records
por: Chowdhury, Shaika, et al.
Publicado: (2023) -
Optimal dynamic regimens with artificial intelligence: The case of temozolomide
por: Houy, Nicolas, et al.
Publicado: (2018)