Cargando…
Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults
Physical activity (PA) is known to be a risk factor for obesity and chronic diseases such as diabetes and metabolic syndrome. Few attempts have been made to pattern the time of physical activity while incorporating intensity and duration in order to determine the relationship of this multi-faceted b...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901066/ https://www.ncbi.nlm.nih.gov/pubmed/36747782 http://dx.doi.org/10.1101/2023.01.23.23284777 |
_version_ | 1784882967061987328 |
---|---|
author | Guo, Jiaqi Gelfand, Saul B. Hennessy, Erin Aqeel, Marah M. Eicher-Miller, Heather A. Richards, Elizabeth A. Lin, Luotao Bhadra, Anindya Delp, Edward J. |
author_facet | Guo, Jiaqi Gelfand, Saul B. Hennessy, Erin Aqeel, Marah M. Eicher-Miller, Heather A. Richards, Elizabeth A. Lin, Luotao Bhadra, Anindya Delp, Edward J. |
author_sort | Guo, Jiaqi |
collection | PubMed |
description | Physical activity (PA) is known to be a risk factor for obesity and chronic diseases such as diabetes and metabolic syndrome. Few attempts have been made to pattern the time of physical activity while incorporating intensity and duration in order to determine the relationship of this multi-faceted behavior with health. In this paper, we explore a distance-based approach for clustering daily physical activity time series to estimate temporal physical activity patterns among U.S. adults (ages 20–65) from the National Health and Nutrition Examination Survey 2003–2006 (NHANES). A number of distance measures and distance-based clustering methods were investigated and compared using various metrics. These metrics include the Silhouette and the Dunn Index (internal criteria), and the associations of the clusters with health status indicators (external criteria). Our experiments indicate that using a distance-based cluster analysis approach to estimate temporal physical activity patterns through the day, has the potential to describe the complexity of behavior rather than characterizing physical activity patterns solely by sums or labels of maximum activity levels. |
format | Online Article Text |
id | pubmed-9901066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-99010662023-02-07 Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults Guo, Jiaqi Gelfand, Saul B. Hennessy, Erin Aqeel, Marah M. Eicher-Miller, Heather A. Richards, Elizabeth A. Lin, Luotao Bhadra, Anindya Delp, Edward J. medRxiv Article Physical activity (PA) is known to be a risk factor for obesity and chronic diseases such as diabetes and metabolic syndrome. Few attempts have been made to pattern the time of physical activity while incorporating intensity and duration in order to determine the relationship of this multi-faceted behavior with health. In this paper, we explore a distance-based approach for clustering daily physical activity time series to estimate temporal physical activity patterns among U.S. adults (ages 20–65) from the National Health and Nutrition Examination Survey 2003–2006 (NHANES). A number of distance measures and distance-based clustering methods were investigated and compared using various metrics. These metrics include the Silhouette and the Dunn Index (internal criteria), and the associations of the clusters with health status indicators (external criteria). Our experiments indicate that using a distance-based cluster analysis approach to estimate temporal physical activity patterns through the day, has the potential to describe the complexity of behavior rather than characterizing physical activity patterns solely by sums or labels of maximum activity levels. Cold Spring Harbor Laboratory 2023-01-26 /pmc/articles/PMC9901066/ /pubmed/36747782 http://dx.doi.org/10.1101/2023.01.23.23284777 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Guo, Jiaqi Gelfand, Saul B. Hennessy, Erin Aqeel, Marah M. Eicher-Miller, Heather A. Richards, Elizabeth A. Lin, Luotao Bhadra, Anindya Delp, Edward J. Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults |
title | Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults |
title_full | Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults |
title_fullStr | Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults |
title_full_unstemmed | Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults |
title_short | Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults |
title_sort | cluster analysis to find temporal physical activity patterns among us adults |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901066/ https://www.ncbi.nlm.nih.gov/pubmed/36747782 http://dx.doi.org/10.1101/2023.01.23.23284777 |
work_keys_str_mv | AT guojiaqi clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT gelfandsaulb clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT hennessyerin clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT aqeelmarahm clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT eichermillerheathera clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT richardselizabetha clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT linluotao clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT bhadraanindya clusteranalysistofindtemporalphysicalactivitypatternsamongusadults AT delpedwardj clusteranalysistofindtemporalphysicalactivitypatternsamongusadults |