Cargando…
Force field-inspired molecular representation learning for property prediction
Molecular representation learning is a crucial task to accelerate drug discovery and materials design. Graph neural networks (GNNs) have emerged as a promising approach to tackle this task. However, most of them do not fully consider the intramolecular interactions, i.e. bond stretching, angle bendi...
Autores principales: | Ren, Gao-Peng, Yin, Yi-Jian, Wu, Ke-Jun, He, Yuchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901163/ https://www.ncbi.nlm.nih.gov/pubmed/36747267 http://dx.doi.org/10.1186/s13321-023-00691-2 |
Ejemplares similares
-
Force field-inspired transformer network assisted crystal density prediction for energetic materials
por: Jin, Jun-Xuan, et al.
Publicado: (2023) -
Analyzing Learned Molecular Representations for Property
Prediction
por: Yang, Kevin, et al.
Publicado: (2019) -
Force field generalization and the internal representation of motor learning
por: Rezazadeh, Alireza, et al.
Publicado: (2019) -
Correction to Analyzing
Learned Molecular Representations
for Property Prediction
por: Yang, Kevin, et al.
Publicado: (2019) -
Correction: Force field generalization and the internal representation of motor learning
por: Rezazadeh, Alireza, et al.
Publicado: (2020)