Cargando…
How to approach machine learning-based prediction of drug/compound–target interactions
The identification of drug/compound–target interactions (DTIs) constitutes the basis of drug discovery, for which computational predictive approaches have been developed. As a relatively new data-driven paradigm, proteochemometric (PCM) modeling utilizes both protein and compound properties as a pai...
Autores principales: | Atas Guvenilir, Heval, Doğan, Tunca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901167/ https://www.ncbi.nlm.nih.gov/pubmed/36747300 http://dx.doi.org/10.1186/s13321-023-00689-w |
Ejemplares similares
-
Protein domain-based prediction of drug/compound–target interactions and experimental validation on LIM kinases
por: Doğan, Tunca, et al.
Publicado: (2021) -
Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2018) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023) -
Editorial: Machine Learning Methodologies to Study Molecular Interactions
por: Yakimovich, Artur, et al.
Publicado: (2021) -
DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2020)