Cargando…
Machine learning for scattering data: strategies, perspectives and applications to surface scattering
Machine learning (ML) has received enormous attention in science and beyond. Discussed here are the status, opportunities, challenges and limitations of ML as applied to X-ray and neutron scattering techniques, with an emphasis on surface scattering. Typical strategies are outlined, as well as possi...
Autores principales: | Hinderhofer, Alexander, Greco, Alessandro, Starostin, Vladimir, Munteanu, Valentin, Pithan, Linus, Gerlach, Alexander, Schreiber, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901926/ https://www.ncbi.nlm.nih.gov/pubmed/36777139 http://dx.doi.org/10.1107/S1600576722011566 |
Ejemplares similares
-
Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
por: Pithan, Linus, et al.
Publicado: (2023) -
Fast fitting of reflectivity data of growing thin films using neural networks
por: Greco, Alessandro, et al.
Publicado: (2019) -
Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering
por: Greco, Alessandro, et al.
Publicado: (2022) -
Polymorphism and structure formation in copper phthalocyanine thin films
por: Reisz, Berthold, et al.
Publicado: (2021) -
Characterisation of particles in solution – a perspective on light scattering and comparative technologies
por: Maguire, Ciarán Manus, et al.
Publicado: (2018)