Cargando…
Combining reverse Monte Carlo analysis of X-ray scattering and extended X-ray absorption fine structure spectra of very small nanoparticles
Finite size effects in partial pair distribution functions generate artefacts in the scattering structure factor and scattering intensity. It is shown how they can be overcome using a binned version of the Debye scattering equation. Accordingly, reverse Monte Carlo simulations are used for very smal...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901930/ https://www.ncbi.nlm.nih.gov/pubmed/36777145 http://dx.doi.org/10.1107/S1600576722010858 |
Sumario: | Finite size effects in partial pair distribution functions generate artefacts in the scattering structure factor and scattering intensity. It is shown how they can be overcome using a binned version of the Debye scattering equation. Accordingly, reverse Monte Carlo simulations are used for very small nanoparticles of LaFeO(3) with diameters below 10 nm to simultaneously analyse X-ray scattering data and extended X-ray absorption fine structure spectra at the La K and Fe K edges. The structural information obtained is consistent regarding local structure and long-range order. |
---|