Cargando…
Super resolution reconstruction of CT images based on multi-scale attention mechanism
CT diagnosis has been widely used in clinic because of its special diagnostic value. The image resolution of CT imaging system is constrained by X-ray focus size, detector element spacing, reconstruction algorithm and other factors, which makes the generated CT image have some problems, such as low...
Autores principales: | Yin, Jian, Xu, Shao-Hua, Du, Yan-Bin, Jia, Rui-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902249/ https://www.ncbi.nlm.nih.gov/pubmed/36778717 http://dx.doi.org/10.1007/s11042-023-14436-8 |
Ejemplares similares
-
Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
por: Zhao, Tianliu, et al.
Publicado: (2021) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
MLWAN: Multi-Scale Learning Wavelet Attention Module Network for Image Super Resolution
por: Ma, Jian, et al.
Publicado: (2022) -
Fusing multi-scale information in convolution network for MR image super-resolution reconstruction
por: Liu, Chang, et al.
Publicado: (2018) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022)