Cargando…

A counterfactual analysis of opioid-involved deaths during the COVID-19 pandemic using a spatiotemporal random forest modeling approach

The global pandemic of SARS-CoV-2 (COVID-19) has been linked to adversely impacting individuals with opioid use disorder in the United States. This study focuses on analyzing opioid-involved mortality in the context of COVID-19 in the U.S. from a geospatial perspective. We investigated spatiotempora...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Zhiyue, Stewart, Kathleen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902297/
https://www.ncbi.nlm.nih.gov/pubmed/36774811
http://dx.doi.org/10.1016/j.healthplace.2023.102986
Descripción
Sumario:The global pandemic of SARS-CoV-2 (COVID-19) has been linked to adversely impacting individuals with opioid use disorder in the United States. This study focuses on analyzing opioid-involved mortality in the context of COVID-19 in the U.S. from a geospatial perspective. We investigated spatiotemporal patterns of opioid-involved deaths during 2020 and compared the spatiotemporal pattern of these deaths with patterns for the previous three years (2017–2019) to understand changes in the context of the COVID-19 pandemic. A counterfactual analysis framework together with a space-time random forest (STRF) model were used to estimate the increase in opioid-involved deaths related to the pandemic. To gain further insight into the relationship between opioid deaths and COVID-19-related factors, we built a space-time random forest model for the City of Chicago, that experienced a steep increase in opioid-related deaths during 2020. High ranking indicators identified by the model such as the number of positive COVID-19 cases adjusted by population and the change in stay-at-home dwell time during the pandemic were used to generate a vulnerability index for opioid overdoses during the COVID-19 pandemic in Chicago.