Cargando…
Molecular age estimation based on posttranslational protein modifications in bone: why the type of bone matters
Age-at-death estimation is of great relevance for the identification of unknown deceased individuals. In skeletonised corpses, teeth and bones are theoretically available for age estimation, but in many cases, only single bones or even only bone fragments are available for examination. In these case...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902325/ https://www.ncbi.nlm.nih.gov/pubmed/36648544 http://dx.doi.org/10.1007/s00414-023-02948-9 |
Sumario: | Age-at-death estimation is of great relevance for the identification of unknown deceased individuals. In skeletonised corpses, teeth and bones are theoretically available for age estimation, but in many cases, only single bones or even only bone fragments are available for examination. In these cases, conventional morphological methods may not be applicable, and the application of molecular methods may be considered. Protein-based molecular methods based on the D-aspartic acid (D-Asp) or pentosidine (Pen) content have already been successfully applied to bone samples. However, the impact of the analysed type of bone has not yet been systematically investigated, and it is still unclear whether data from samples of one skeletal region (e.g. skull) can also be used for age estimation for samples of other regions (e.g. femur). To address this question, D-Asp and Pen were analysed in bone samples from three skeletal regions (skull, clavicle, and rib), each from the same individual. Differences between the bone types were tested by t-test, and correlation coefficients (ρ) were calculated according to Spearman. In all types of bone, an age-dependent accumulation of D-Asp and Pen was observed. However, both parameters (D-Asp and Pen) exhibited significant differences between bone samples from different anatomical regions. These differences can be explained by differences in structure and metabolism in the examined bone types and have to be addressed in age estimation based on D-Asp and Pen. In future studies, bone type-specific training and test data have to be collected, and bone type-specific models have to be established. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00414-023-02948-9. |
---|