Cargando…
Predictors of residual disease after debulking surgery in advanced stage ovarian cancer
OBJECTIVE: Optimal debulking with no macroscopic residual disease strongly predicts ovarian cancer survival. The ability to predict likelihood of optimal debulking, which may be partially dependent on tumor biology, could inform clinical decision-making regarding use of neoadjuvant chemotherapy. Thu...
Autores principales: | Abbas-Aghababazadeh, Farnoosh, Sasamoto, Naoko, Townsend, Mary K., Huang, Tianyi, Terry, Kathryn L., Vitonis, Allison F., Elias, Kevin M., Poole, Elizabeth M., Hecht, Jonathan L., Tworoger, Shelley S., Fridley, Brooke L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902593/ https://www.ncbi.nlm.nih.gov/pubmed/36761962 http://dx.doi.org/10.3389/fonc.2023.1090092 |
Ejemplares similares
-
Lifetime ovulatory years and ovarian cancer gene expression profiles
por: Sasamoto, Naoko, et al.
Publicado: (2022) -
Associations between prediagnostic aspirin use and ovarian tumor gene expression
por: Sasamoto, Naoko, et al.
Publicado: (2023) -
Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing
por: Abbas-Aghababazadeh, Farnoosh, et al.
Publicado: (2018) -
Nonlinear mixed-effects models for modeling in vitro drug response data to determine problematic cancer cell lines
por: Abbas-Aghababazadeh, Farnoosh, et al.
Publicado: (2019) -
Polymorphisms of MUC16 (CA125) and MUC1 (CA15.3) in Relation to Ovarian Cancer Risk and Survival
por: Williams, Kristina A., et al.
Publicado: (2014)