Cargando…

Topological superconducting vortex from trivial electronic bands

Superconducting vortices are promising traps to confine non-Abelian Majorana quasi-particles. It has been widely believed that bulk-state topology, of either normal-state or superconducting ground-state wavefunctions, is crucial for enabling Majorana zero modes in solid-state systems. This common be...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Lun-Hui, Zhang, Rui-Xing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902606/
https://www.ncbi.nlm.nih.gov/pubmed/36746955
http://dx.doi.org/10.1038/s41467-023-36347-w
Descripción
Sumario:Superconducting vortices are promising traps to confine non-Abelian Majorana quasi-particles. It has been widely believed that bulk-state topology, of either normal-state or superconducting ground-state wavefunctions, is crucial for enabling Majorana zero modes in solid-state systems. This common belief has shaped two major search directions for Majorana modes, in either intrinsic topological superconductors or trivially superconducting topological materials. Here we show that Majorana-carrying superconducting vortex is not exclusive to bulk-state topology, but can arise from topologically trivial quantum materials as well. We predict that the trivial bands in superconducting HgTe-class materials are responsible for inducing anomalous vortex topological physics that goes beyond any existing theoretical paradigms. A feasible scheme of strain-controlled Majorana engineering and experimental signatures for vortex Majorana modes are also discussed. Our work provides new guidelines for vortex-based Majorana search in general superconductors.