Cargando…
Deep learning outperforms kidney organoid experts
Autores principales: | Yu, Seyoung, Gee, Heon Yung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Nephrology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902735/ https://www.ncbi.nlm.nih.gov/pubmed/36747356 http://dx.doi.org/10.23876/j.krcp.22.174 |
Ejemplares similares
-
Machine learning outperforms clinical experts in classification of hip fractures
por: Murphy, E. A., et al.
Publicado: (2022) -
Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images
por: Zhou, Wenying, et al.
Publicado: (2021) -
Deep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition
por: Buetti-Dinh, Antoine, et al.
Publicado: (2019) -
Kidney organoids for disease modeling
por: Garreta, Elena, et al.
Publicado: (2018) -
Disease modeling of ADAMTS9-related nephropathy using kidney organoids reveals its roles in tubular cells and podocytes
por: Yu, Seyoung, et al.
Publicado: (2023)