Cargando…
Evolution of Clinical Phenotypes of COVID-19 Patients During Intensive Care Treatment: An Unsupervised Machine Learning Analysis
BACKGROUND: Identification of clinical phenotypes in critically ill COVID-19 patients could improve understanding of the disease heterogeneity and enable prognostic and predictive enrichment. However, previous attempts did not take into account temporal dynamics with high granularity. By including t...
Autores principales: | Siepel, Sander, Dam, Tariq A., Fleuren, Lucas M., Girbes, Armand R.J., Hoogendoorn, Mark, Thoral, Patrick J., Elbers, Paul W.G., Bennis, Frank C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902809/ https://www.ncbi.nlm.nih.gov/pubmed/36744415 http://dx.doi.org/10.1177/08850666231153393 |
Ejemplares similares
-
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
por: Fleuren, Lucas M., et al.
Publicado: (2020) -
Explainable Machine Learning on AmsterdamUMCdb for ICU Discharge Decision Support: Uniting Intensivists and Data Scientists
por: Thoral, Patrick J., et al.
Publicado: (2021) -
Right Dose, Right Now: Development of AutoKinetics for Real Time Model Informed Precision Antibiotic Dosing Decision Support at the Bedside of Critically Ill Patients
por: Roggeveen, Luca F., et al.
Publicado: (2020) -
Why we should sample sparsely and aim for a higher target: Lessons from model‐based therapeutic drug monitoring of vancomycin in intensive care patients
por: Guo, Tingjie, et al.
Publicado: (2020) -
Is routine autopsy in the intensive care unit viable?
por: Girbes, Armand RJ, et al.
Publicado: (2010)