Cargando…

Efficient simulation strategy to design a safer motorcycle

This work presents models and simulations of a numerical strategy for a time and cost-efficient virtual product development of a novel passive safety restraint concept for motorcycles. It combines multiple individual development tasks in an aggregated procedure. The strategy consists of three succes...

Descripción completa

Detalles Bibliográficos
Autores principales: Maier, Steffen, Fehr, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902826/
https://www.ncbi.nlm.nih.gov/pubmed/36779204
http://dx.doi.org/10.1007/s11044-023-09879-8
Descripción
Sumario:This work presents models and simulations of a numerical strategy for a time and cost-efficient virtual product development of a novel passive safety restraint concept for motorcycles. It combines multiple individual development tasks in an aggregated procedure. The strategy consists of three successive virtual development stages with a continuously increasing level of detail and expected fidelity in multibody and finite element simulation environments. The results show what is possible with an entirely virtual concept study—based on the clever combination of multibody dynamics and nonlinear finite elements—that investigates the structural behavior and impact dynamics of the powered two-wheeler with the safety systems and the rider’s response. The simulations show a guided and controlled trajectory and deceleration of the motorcycle rider, resulting in fewer critical biomechanical loads on the rider compared to an impact with a conventional motorcycle. The numerical research strategy outlines a novel procedure in virtual motorcycle accident research with different levels of computational effort and model complexity aimed at a step-by-step validation of individual components in the future.