Cargando…
Pilot study for generating and assessing nomograms and decision curves analysis to predict clinically significant prostate cancer using only spatially registered multi-parametric MRI
BACKGROUND: Current prostate cancer evaluation can be inaccurate and burdensome. To help non-invasive prostate tumor assessment, recent algorithms applied to spatially registered multi-parametric (SRMP) MRI extracted novel clinically relevant metrics, namely the tumor’s eccentricity (shape), signal-...
Autores principales: | Mayer, Rulon, Turkbey, Baris, Choyke, Peter, Simone, Charles B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902912/ https://www.ncbi.nlm.nih.gov/pubmed/36761948 http://dx.doi.org/10.3389/fonc.2023.1066498 |
Ejemplares similares
-
Assessing and testing anomaly detection for finding prostate cancer in spatially registered multi-parametric MRI
por: Mayer, Rulon, et al.
Publicado: (2023) -
Application of Spectral Algorithm Applied to Spatially Registered Bi-Parametric MRI to Predict Prostate Tumor Aggressiveness: A Pilot Study
por: Mayer, Rulon, et al.
Publicado: (2023) -
Relationship between Eccentricity and Volume Determined by Spectral Algorithms Applied to Spatially Registered Bi-Parametric MRI and Prostate Tumor Aggressiveness: A Pilot Study
por: Mayer, Rulon, et al.
Publicado: (2023) -
Validation of an MRI-based prostate cancer prebiopsy Gleason score predictive nomogram
por: Lee, Adrianna Jiaying, et al.
Publicado: (2022) -
The Role of MRI in Prostate Cancer Active Surveillance
por: Johnson, Linda M., et al.
Publicado: (2014)