Cargando…

Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data

[Image: see text] Biomarkers are of central importance for assessing the health state and to guide medical interventions and their efficacy; still, they are lacking for most diseases. Mass spectrometry (MS)-based proteomics is a powerful technology for biomarker discovery but requires sophisticated...

Descripción completa

Detalles Bibliográficos
Autores principales: Torun, Furkan M., Virreira Winter, Sebastian, Doll, Sophia, Riese, Felix M., Vorobyev, Artem, Mueller-Reif, Johannes B., Geyer, Philipp E., Strauss, Maximilian T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903317/
https://www.ncbi.nlm.nih.gov/pubmed/36426751
http://dx.doi.org/10.1021/acs.jproteome.2c00473
_version_ 1784883447285678080
author Torun, Furkan M.
Virreira Winter, Sebastian
Doll, Sophia
Riese, Felix M.
Vorobyev, Artem
Mueller-Reif, Johannes B.
Geyer, Philipp E.
Strauss, Maximilian T.
author_facet Torun, Furkan M.
Virreira Winter, Sebastian
Doll, Sophia
Riese, Felix M.
Vorobyev, Artem
Mueller-Reif, Johannes B.
Geyer, Philipp E.
Strauss, Maximilian T.
author_sort Torun, Furkan M.
collection PubMed
description [Image: see text] Biomarkers are of central importance for assessing the health state and to guide medical interventions and their efficacy; still, they are lacking for most diseases. Mass spectrometry (MS)-based proteomics is a powerful technology for biomarker discovery but requires sophisticated bioinformatics to identify robust patterns. Machine learning (ML) has become a promising tool for this purpose. However, it is sometimes applied in an opaque manner and generally requires specialized knowledge. To enable easy access to ML for biomarker discovery without any programming or bioinformatics skills, we developed “OmicLearn” (http://OmicLearn.org), an open-source browser-based ML tool using the latest advances in the Python ML ecosystem. Data matrices from omics experiments are easily uploaded to an online or a locally installed web server. OmicLearn enables rapid exploration of the suitability of various ML algorithms for the experimental data sets. It fosters open science via transparent assessment of state-of-the-art algorithms in a standardized format for proteomics and other omics sciences.
format Online
Article
Text
id pubmed-9903317
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99033172023-02-08 Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data Torun, Furkan M. Virreira Winter, Sebastian Doll, Sophia Riese, Felix M. Vorobyev, Artem Mueller-Reif, Johannes B. Geyer, Philipp E. Strauss, Maximilian T. J Proteome Res [Image: see text] Biomarkers are of central importance for assessing the health state and to guide medical interventions and their efficacy; still, they are lacking for most diseases. Mass spectrometry (MS)-based proteomics is a powerful technology for biomarker discovery but requires sophisticated bioinformatics to identify robust patterns. Machine learning (ML) has become a promising tool for this purpose. However, it is sometimes applied in an opaque manner and generally requires specialized knowledge. To enable easy access to ML for biomarker discovery without any programming or bioinformatics skills, we developed “OmicLearn” (http://OmicLearn.org), an open-source browser-based ML tool using the latest advances in the Python ML ecosystem. Data matrices from omics experiments are easily uploaded to an online or a locally installed web server. OmicLearn enables rapid exploration of the suitability of various ML algorithms for the experimental data sets. It fosters open science via transparent assessment of state-of-the-art algorithms in a standardized format for proteomics and other omics sciences. American Chemical Society 2022-11-25 /pmc/articles/PMC9903317/ /pubmed/36426751 http://dx.doi.org/10.1021/acs.jproteome.2c00473 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Torun, Furkan M.
Virreira Winter, Sebastian
Doll, Sophia
Riese, Felix M.
Vorobyev, Artem
Mueller-Reif, Johannes B.
Geyer, Philipp E.
Strauss, Maximilian T.
Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data
title Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data
title_full Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data
title_fullStr Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data
title_full_unstemmed Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data
title_short Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data
title_sort transparent exploration of machine learning for biomarker discovery from proteomics and omics data
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903317/
https://www.ncbi.nlm.nih.gov/pubmed/36426751
http://dx.doi.org/10.1021/acs.jproteome.2c00473
work_keys_str_mv AT torunfurkanm transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT virreirawintersebastian transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT dollsophia transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT riesefelixm transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT vorobyevartem transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT muellerreifjohannesb transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT geyerphilippe transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata
AT straussmaximiliant transparentexplorationofmachinelearningforbiomarkerdiscoveryfromproteomicsandomicsdata