Cargando…
Application of a Novel Hybrid CNN-GNN for Peptide Ion Encoding
[Image: see text] Almost all state-of-the-art de novo peptide sequencing algorithms now use machine learning models to encode fragment peaks and hence identify amino acids in mass spectrometry (MS) spectra. Previous work has highlighted how the inherent MS challenges of noise and missing peptide pea...
Autores principales: | McDonnell, Kevin, Abram, Florence, Howley, Enda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903319/ https://www.ncbi.nlm.nih.gov/pubmed/36534699 http://dx.doi.org/10.1021/acs.jproteome.2c00234 |
Ejemplares similares
-
The impact of noise and missing fragmentation cleavages on de novo peptide identification algorithms
por: McDonnell, Kevin, et al.
Publicado: (2022) -
Critical evaluation of the use of artificial data for machine learning based de novo peptide identification
por: McDonnell, Kevin, et al.
Publicado: (2023) -
Quantum GNN and hybrid data embedding for particle tracking
por: Tuysuz, Cenk, et al.
Publicado: (2021) -
ATLAS GNN Flavour Tagging
por: Van Stroud, Samuel
Publicado: (2023) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019)