Cargando…
Towards the characterization of the tumor microenvironment through dictionary learning-based interpretable classification of multiplexed immunofluorescence images
Objective. Histology image analysis is a crucial diagnostic step in staging and treatment planning, especially for cancerous lesions. With the increasing adoption of computational methods for image analysis, significant strides are being made to improve the performance metrics of image segmentation...
Autores principales: | Krishnan, Santhoshi N, Barua, Souptik, Frankel, Timothy L, Rao, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903331/ https://www.ncbi.nlm.nih.gov/pubmed/36541756 http://dx.doi.org/10.1088/1361-6560/aca86a |
Ejemplares similares
-
Characterizing the Tumor Immune Microenvironment with Tyramide-Based Multiplex Immunofluorescence
por: Mori, Hidetoshi, et al.
Publicado: (2021) -
CGAT: Cell Graph ATtention Network for Grading of Pancreatic Disease Histology Images
por: Baranwal, Mayank, et al.
Publicado: (2021) -
GaWRDenMap: a quantitative framework to study the local variation in cell–cell interactions in pancreatic disease subtypes
por: Krishnan, Santhoshi N., et al.
Publicado: (2022) -
Towards multiplexed immunofluorescence of 3D tissues
por: Cho, Wonjin, et al.
Publicado: (2023) -
New method for immunoprofiling of the tumor microenvironment of cancer patients by opal multiplex quantitative immunofluorescence (IF) assay
por: Kallinteris, Nikoletta L, et al.
Publicado: (2015)