Cargando…
Deep learning model integrating positron emission tomography and clinical data for prognosis prediction in non-small cell lung cancer patients
BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of lung cancers are non-small cell lung cancer (NSCLC), accounting for approximately 85% of all lung cancer types. The Cox proportional hazards model (CPH), which is the standard method for survival analysi...
Autores principales: | Oh, Seungwon, Kang, Sae-Ryung, Oh, In-Jae, Kim, Min-Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903435/ https://www.ncbi.nlm.nih.gov/pubmed/36747153 http://dx.doi.org/10.1186/s12859-023-05160-z |
Ejemplares similares
-
Correction: Deep learning model integrating positron emission tomography and clinical data for prognosis prediction in non-small cell lung cancer patients
por: Oh, Seungwon, et al.
Publicado: (2023) -
Prognosis of preoperative positron emission tomography uptake in hepatectomy patients
por: Kim, Jong Man, et al.
Publicado: (2018) -
In vivo imaging of invasive aspergillosis with (18)F-fluorodeoxysorbitol positron emission tomography
por: Kim, Dong-Yeon, et al.
Publicado: (2022) -
Positron emission tomography in the management of lung cancer
por: Kakhki, Vahid Reza Dabbagh
Publicado: (2007) -
Role of positron emission tomography in lung cancer
por: Miles, K. A.
Publicado: (2015)