Cargando…
The role of artificial intelligence in the treatment of obstructive sleep apnea
BACKGROUND: The first-line and most common treatment for obstructive sleep apnea is nasal continuous positive airway pressure, which serves as a pneumatic splint to stabilize the upper airway and is effective when used with appropriate adherence. Continuous positive airway pressure compliance rates...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903572/ https://www.ncbi.nlm.nih.gov/pubmed/36747273 http://dx.doi.org/10.1186/s40463-023-00621-0 |
Sumario: | BACKGROUND: The first-line and most common treatment for obstructive sleep apnea is nasal continuous positive airway pressure, which serves as a pneumatic splint to stabilize the upper airway and is effective when used with appropriate adherence. Continuous positive airway pressure compliance rates remain significantly low despite machine improvements and compliance intervention. Other treatment options include oral appliances, myofunctional therapy, and surgery. The aim of this project is to elucidate the role of artificial intelligence within improving the treatment of obstructive sleep apnea. METHODS: Related publications between 1999 and 2022 were reviewed from PubMed and Embase databases utilizing search terms “artificial intelligence,” “machine learning,” “obstructive sleep apnea,” and “treatment.” Both authors independently screened the results by title/abstract then by full text review. 126 non-duplicate articles were screened, 38 articles were included after title and abstract screen and 30 articles were included after full text review. The inclusion criteria are outline in the PICO framework and involved studies focused on artificial intelligence application in guiding and evaluating obstructive sleep apnea treatment. Non-English articles were excluded. RESULTS: The role of artificial intelligence in the treatment of OSA was categorized into the following sections: Predicting treatment outcomes of various treatment options, Improving/Evaluating treatment, and Personalizing treatment with improving understanding of underlying mechanisms of OSA. CONCLUSIONS: Artificial intelligence has the capacity to improve the treatment of OSA through predicting outcomes of treatment options, evaluating the treatment the patient is currently utilizing and increasing understanding of the mechanisms that contribute to OSA disease process and physiology. Implementing AI in guiding treatment decisions allows patients to connect with treatment methods that would be most effective on an individual basis. |
---|