Cargando…
Recognizing and monitoring infectious sources of schistosomiasis by developing deep learning models with high-resolution remote sensing images
BACKGROUND: China is progressing towards the goal of schistosomiasis elimination, but there are still some problems, such as difficult management of infection source and snail control. This study aimed to develop deep learning models with high-resolution remote sensing images for recognizing and mon...
Autores principales: | Xue, Jing-Bo, Xia, Shang, Wang, Xin‑Yi, Huang, Lu-Lu, Huang, Liang-Yu, Hao, Yu-Wan, Zhang, Li-Juan, Li, Shi-Zhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903608/ https://www.ncbi.nlm.nih.gov/pubmed/36747280 http://dx.doi.org/10.1186/s40249-023-01060-9 |
Ejemplares similares
-
Potential impact of flooding on schistosomiasis in Poyang Lake regions based on multi-source remote sensing images
por: Xue, Jing-Bo, et al.
Publicado: (2021) -
Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook
por: Walz, Yvonne, et al.
Publicado: (2015) -
Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing
por: Walz, Yvonne, et al.
Publicado: (2015) -
Deep neural network for remote-sensing image interpretation: status and perspectives
por: Li, Jiayi, et al.
Publicado: (2019) -
Multi-Frame Super-Resolution of Gaofen-4 Remote Sensing Images
por: Xu, Jieping, et al.
Publicado: (2017)