Cargando…

Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts

Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological co...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ying, Namba, Shinichi, Lopera, Esteban, Kerminen, Sini, Tsuo, Kristin, Läll, Kristi, Kanai, Masahiro, Zhou, Wei, Wu, Kuan-Han, Favé, Marie-Julie, Bhatta, Laxmi, Awadalla, Philip, Brumpton, Ben, Deelen, Patrick, Hveem, Kristian, Lo Faro, Valeria, Mägi, Reedik, Murakami, Yoshinori, Sanna, Serena, Smoller, Jordan W., Uzunovic, Jasmina, Wolford, Brooke N., Willer, Cristen, Gamazon, Eric R., Cox, Nancy J., Surakka, Ida, Okada, Yukinori, Martin, Alicia R., Hirbo, Jibril
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903818/
https://www.ncbi.nlm.nih.gov/pubmed/36777179
http://dx.doi.org/10.1016/j.xgen.2022.100241
_version_ 1784883529498230784
author Wang, Ying
Namba, Shinichi
Lopera, Esteban
Kerminen, Sini
Tsuo, Kristin
Läll, Kristi
Kanai, Masahiro
Zhou, Wei
Wu, Kuan-Han
Favé, Marie-Julie
Bhatta, Laxmi
Awadalla, Philip
Brumpton, Ben
Deelen, Patrick
Hveem, Kristian
Lo Faro, Valeria
Mägi, Reedik
Murakami, Yoshinori
Sanna, Serena
Smoller, Jordan W.
Uzunovic, Jasmina
Wolford, Brooke N.
Willer, Cristen
Gamazon, Eric R.
Cox, Nancy J.
Surakka, Ida
Okada, Yukinori
Martin, Alicia R.
Hirbo, Jibril
author_facet Wang, Ying
Namba, Shinichi
Lopera, Esteban
Kerminen, Sini
Tsuo, Kristin
Läll, Kristi
Kanai, Masahiro
Zhou, Wei
Wu, Kuan-Han
Favé, Marie-Julie
Bhatta, Laxmi
Awadalla, Philip
Brumpton, Ben
Deelen, Patrick
Hveem, Kristian
Lo Faro, Valeria
Mägi, Reedik
Murakami, Yoshinori
Sanna, Serena
Smoller, Jordan W.
Uzunovic, Jasmina
Wolford, Brooke N.
Willer, Cristen
Gamazon, Eric R.
Cox, Nancy J.
Surakka, Ida
Okada, Yukinori
Martin, Alicia R.
Hirbo, Jibril
author_sort Wang, Ying
collection PubMed
description Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.
format Online
Article
Text
id pubmed-9903818
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99038182023-02-10 Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts Wang, Ying Namba, Shinichi Lopera, Esteban Kerminen, Sini Tsuo, Kristin Läll, Kristi Kanai, Masahiro Zhou, Wei Wu, Kuan-Han Favé, Marie-Julie Bhatta, Laxmi Awadalla, Philip Brumpton, Ben Deelen, Patrick Hveem, Kristian Lo Faro, Valeria Mägi, Reedik Murakami, Yoshinori Sanna, Serena Smoller, Jordan W. Uzunovic, Jasmina Wolford, Brooke N. Willer, Cristen Gamazon, Eric R. Cox, Nancy J. Surakka, Ida Okada, Yukinori Martin, Alicia R. Hirbo, Jibril Cell Genom Article Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era. Elsevier 2023-01-04 /pmc/articles/PMC9903818/ /pubmed/36777179 http://dx.doi.org/10.1016/j.xgen.2022.100241 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wang, Ying
Namba, Shinichi
Lopera, Esteban
Kerminen, Sini
Tsuo, Kristin
Läll, Kristi
Kanai, Masahiro
Zhou, Wei
Wu, Kuan-Han
Favé, Marie-Julie
Bhatta, Laxmi
Awadalla, Philip
Brumpton, Ben
Deelen, Patrick
Hveem, Kristian
Lo Faro, Valeria
Mägi, Reedik
Murakami, Yoshinori
Sanna, Serena
Smoller, Jordan W.
Uzunovic, Jasmina
Wolford, Brooke N.
Willer, Cristen
Gamazon, Eric R.
Cox, Nancy J.
Surakka, Ida
Okada, Yukinori
Martin, Alicia R.
Hirbo, Jibril
Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
title Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
title_full Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
title_fullStr Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
title_full_unstemmed Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
title_short Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
title_sort global biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903818/
https://www.ncbi.nlm.nih.gov/pubmed/36777179
http://dx.doi.org/10.1016/j.xgen.2022.100241
work_keys_str_mv AT wangying globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT nambashinichi globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT loperaesteban globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT kerminensini globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT tsuokristin globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT lallkristi globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT kanaimasahiro globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT zhouwei globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT wukuanhan globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT favemariejulie globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT bhattalaxmi globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT awadallaphilip globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT brumptonben globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT deelenpatrick globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT hveemkristian globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT lofarovaleria globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT magireedik globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT murakamiyoshinori globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT sannaserena globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT smollerjordanw globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT uzunovicjasmina globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT wolfordbrooken globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT willercristen globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT gamazonericr globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT coxnancyj globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT surakkaida globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT okadayukinori globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT martinaliciar globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts
AT hirbojibril globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts