Cargando…
Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological co...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903818/ https://www.ncbi.nlm.nih.gov/pubmed/36777179 http://dx.doi.org/10.1016/j.xgen.2022.100241 |
_version_ | 1784883529498230784 |
---|---|
author | Wang, Ying Namba, Shinichi Lopera, Esteban Kerminen, Sini Tsuo, Kristin Läll, Kristi Kanai, Masahiro Zhou, Wei Wu, Kuan-Han Favé, Marie-Julie Bhatta, Laxmi Awadalla, Philip Brumpton, Ben Deelen, Patrick Hveem, Kristian Lo Faro, Valeria Mägi, Reedik Murakami, Yoshinori Sanna, Serena Smoller, Jordan W. Uzunovic, Jasmina Wolford, Brooke N. Willer, Cristen Gamazon, Eric R. Cox, Nancy J. Surakka, Ida Okada, Yukinori Martin, Alicia R. Hirbo, Jibril |
author_facet | Wang, Ying Namba, Shinichi Lopera, Esteban Kerminen, Sini Tsuo, Kristin Läll, Kristi Kanai, Masahiro Zhou, Wei Wu, Kuan-Han Favé, Marie-Julie Bhatta, Laxmi Awadalla, Philip Brumpton, Ben Deelen, Patrick Hveem, Kristian Lo Faro, Valeria Mägi, Reedik Murakami, Yoshinori Sanna, Serena Smoller, Jordan W. Uzunovic, Jasmina Wolford, Brooke N. Willer, Cristen Gamazon, Eric R. Cox, Nancy J. Surakka, Ida Okada, Yukinori Martin, Alicia R. Hirbo, Jibril |
author_sort | Wang, Ying |
collection | PubMed |
description | Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era. |
format | Online Article Text |
id | pubmed-9903818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99038182023-02-10 Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts Wang, Ying Namba, Shinichi Lopera, Esteban Kerminen, Sini Tsuo, Kristin Läll, Kristi Kanai, Masahiro Zhou, Wei Wu, Kuan-Han Favé, Marie-Julie Bhatta, Laxmi Awadalla, Philip Brumpton, Ben Deelen, Patrick Hveem, Kristian Lo Faro, Valeria Mägi, Reedik Murakami, Yoshinori Sanna, Serena Smoller, Jordan W. Uzunovic, Jasmina Wolford, Brooke N. Willer, Cristen Gamazon, Eric R. Cox, Nancy J. Surakka, Ida Okada, Yukinori Martin, Alicia R. Hirbo, Jibril Cell Genom Article Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era. Elsevier 2023-01-04 /pmc/articles/PMC9903818/ /pubmed/36777179 http://dx.doi.org/10.1016/j.xgen.2022.100241 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wang, Ying Namba, Shinichi Lopera, Esteban Kerminen, Sini Tsuo, Kristin Läll, Kristi Kanai, Masahiro Zhou, Wei Wu, Kuan-Han Favé, Marie-Julie Bhatta, Laxmi Awadalla, Philip Brumpton, Ben Deelen, Patrick Hveem, Kristian Lo Faro, Valeria Mägi, Reedik Murakami, Yoshinori Sanna, Serena Smoller, Jordan W. Uzunovic, Jasmina Wolford, Brooke N. Willer, Cristen Gamazon, Eric R. Cox, Nancy J. Surakka, Ida Okada, Yukinori Martin, Alicia R. Hirbo, Jibril Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
title | Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
title_full | Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
title_fullStr | Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
title_full_unstemmed | Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
title_short | Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
title_sort | global biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903818/ https://www.ncbi.nlm.nih.gov/pubmed/36777179 http://dx.doi.org/10.1016/j.xgen.2022.100241 |
work_keys_str_mv | AT wangying globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT nambashinichi globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT loperaesteban globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT kerminensini globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT tsuokristin globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT lallkristi globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT kanaimasahiro globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT zhouwei globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT wukuanhan globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT favemariejulie globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT bhattalaxmi globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT awadallaphilip globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT brumptonben globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT deelenpatrick globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT hveemkristian globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT lofarovaleria globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT magireedik globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT murakamiyoshinori globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT sannaserena globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT smollerjordanw globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT uzunovicjasmina globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT wolfordbrooken globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT willercristen globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT gamazonericr globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT coxnancyj globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT surakkaida globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT okadayukinori globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT martinaliciar globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts AT hirbojibril globalbiobankanalysesprovidelessonsfordevelopingpolygenicriskscoresacrossdiversecohorts |