Cargando…

Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability

Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sklenář, F., Glässnerová, K., Jurjević, Ž., Houbraken, J., Samson, R.A., Visagie, C.M., Yilmaz, N., Gené, J., Cano, J., Chen, A.J., Nováková, A., Yaguchi, T., Kolařík, M., Hubka, V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Westerdijk Fungal Biodiversity Institute 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903908/
https://www.ncbi.nlm.nih.gov/pubmed/36760461
http://dx.doi.org/10.3114/sim.2022.102.02
_version_ 1784883537532420096
author Sklenář, F.
Glässnerová, K.
Jurjević, Ž.
Houbraken, J.
Samson, R.A.
Visagie, C.M.
Yilmaz, N.
Gené, J.
Cano, J.
Chen, A.J.
Nováková, A.
Yaguchi, T.
Kolařík, M.
Hubka, V.
author_facet Sklenář, F.
Glässnerová, K.
Jurjević, Ž.
Houbraken, J.
Samson, R.A.
Visagie, C.M.
Yilmaz, N.
Gené, J.
Cano, J.
Chen, A.J.
Nováková, A.
Yaguchi, T.
Kolařík, M.
Hubka, V.
author_sort Sklenář, F.
collection PubMed
description Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53–93. doi: 10.3114/sim.2022.102.02
format Online
Article
Text
id pubmed-9903908
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Westerdijk Fungal Biodiversity Institute
record_format MEDLINE/PubMed
spelling pubmed-99039082023-02-08 Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability Sklenář, F. Glässnerová, K. Jurjević, Ž. Houbraken, J. Samson, R.A. Visagie, C.M. Yilmaz, N. Gené, J. Cano, J. Chen, A.J. Nováková, A. Yaguchi, T. Kolařík, M. Hubka, V. Stud Mycol Article Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53–93. doi: 10.3114/sim.2022.102.02 Westerdijk Fungal Biodiversity Institute 2022-11-16 2022-12 /pmc/articles/PMC9903908/ /pubmed/36760461 http://dx.doi.org/10.3114/sim.2022.102.02 Text en © 2022 Westerdijk Fungal Biodiversity Institute https://creativecommons.org/licenses/by-nc-nd/3.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
spellingShingle Article
Sklenář, F.
Glässnerová, K.
Jurjević, Ž.
Houbraken, J.
Samson, R.A.
Visagie, C.M.
Yilmaz, N.
Gené, J.
Cano, J.
Chen, A.J.
Nováková, A.
Yaguchi, T.
Kolařík, M.
Hubka, V.
Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
title Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
title_full Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
title_fullStr Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
title_full_unstemmed Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
title_short Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
title_sort taxonomy of aspergillus series versicolores: species reduction and lessons learned about intraspecific variability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903908/
https://www.ncbi.nlm.nih.gov/pubmed/36760461
http://dx.doi.org/10.3114/sim.2022.102.02
work_keys_str_mv AT sklenarf taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT glassnerovak taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT jurjevicz taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT houbrakenj taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT samsonra taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT visagiecm taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT yilmazn taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT genej taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT canoj taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT chenaj taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT novakovaa taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT yaguchit taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT kolarikm taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability
AT hubkav taxonomyofaspergillusseriesversicoloresspeciesreductionandlessonslearnedaboutintraspecificvariability