Cargando…
PySWMM: The Python Interface to Stormwater Management Model (SWMM)
Stormwater management seeks to reduce runoff from rain or melted snow and improve water quality. Where it can absorb into soil, runoff is filtered and returns to streams, rivers, and aquifers, but in developed areas, precipitation often cannot soak into the ground because impervious surfaces (e.g.,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903932/ https://www.ncbi.nlm.nih.gov/pubmed/36756303 http://dx.doi.org/10.21105/joss.02292 |
Sumario: | Stormwater management seeks to reduce runoff from rain or melted snow and improve water quality. Where it can absorb into soil, runoff is filtered and returns to streams, rivers, and aquifers, but in developed areas, precipitation often cannot soak into the ground because impervious surfaces (e.g., pavement, buildings), and already saturated soils can create excess runoff. This water, which can contain pollutants, then runs across urban surfaces and into storm drains, drainage ditches, and sewer systems. Stormwater runoff can cause flooding, erosion, infrastructure and habitat damage, and contamination (including combined and sanitary sewer overflows). In urban and developed areas, effective stormwater management that routes and detains stormwater helps to mitigate these impacts and improve water quality. |
---|