Cargando…
PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration
INTRODUCTION: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904224/ https://www.ncbi.nlm.nih.gov/pubmed/36760757 http://dx.doi.org/10.2147/IJN.S393890 |
_version_ | 1784883576878137344 |
---|---|
author | Táborská, Johanka Blanquer, Andreu Brynda, Eduard Filová, Elena Stiborová, Lenka Jenčová, Věra Havlíčková, Kristýna Riedelová, Zuzana Riedel, Tomáš |
author_facet | Táborská, Johanka Blanquer, Andreu Brynda, Eduard Filová, Elena Stiborová, Lenka Jenčová, Věra Havlíčková, Kristýna Riedelová, Zuzana Riedel, Tomáš |
author_sort | Táborská, Johanka |
collection | PubMed |
description | INTRODUCTION: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules. METHODS: Electrospun PLCL/PCL nanofibers were coated with fibrin-based coating prepared by a controlled technique and enriched with human platelet lysate (hPL), fibroblast growth factor 2 (FGF), and vascular endothelial growth factor (VEGF). The coating was characterized by scanning electron microscopy and fluorescent microscopy. Protein content and its release rate and the effect on human saphenous vein endothelial cells (HSVEC) were evaluated. RESULTS: The highest protein amount is achieved by the coating of PLCL/PCL with a fibrin mesh containing 20% v/v hPL (NF20). The fibrin coating serves as an excellent scaffold to accumulate bioactive molecules from hPL such as PDGF-BB, fibronectin (Fn), and α-2 antiplasmin. The NF20 coating shows both fast and a sustained release of the attached bioactive molecules (Fn, VEGF, FGF). The dressing significantly increases the viability of human saphenous vein endothelial cells (HSVECs) cultivated on a collagen-based wound model. The exogenous addition of FGF and VEGF during the coating procedure further increases the HSVECs viability. In addition, the presence of α-2 antiplasmin significantly stabilizes the fibrin mesh and prevents its cleavage by plasmin. DISCUSSION: The NF20 coating supplemented with FGF and VEGF provides a promising wound dressing for the complex treatment of DU. The incorporation of various bioactive molecules from hPL and growth factors has great potential to support the healing processes by providing appropriate stimuli in the chronic wound. |
format | Online Article Text |
id | pubmed-9904224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-99042242023-02-08 PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration Táborská, Johanka Blanquer, Andreu Brynda, Eduard Filová, Elena Stiborová, Lenka Jenčová, Věra Havlíčková, Kristýna Riedelová, Zuzana Riedel, Tomáš Int J Nanomedicine Original Research INTRODUCTION: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules. METHODS: Electrospun PLCL/PCL nanofibers were coated with fibrin-based coating prepared by a controlled technique and enriched with human platelet lysate (hPL), fibroblast growth factor 2 (FGF), and vascular endothelial growth factor (VEGF). The coating was characterized by scanning electron microscopy and fluorescent microscopy. Protein content and its release rate and the effect on human saphenous vein endothelial cells (HSVEC) were evaluated. RESULTS: The highest protein amount is achieved by the coating of PLCL/PCL with a fibrin mesh containing 20% v/v hPL (NF20). The fibrin coating serves as an excellent scaffold to accumulate bioactive molecules from hPL such as PDGF-BB, fibronectin (Fn), and α-2 antiplasmin. The NF20 coating shows both fast and a sustained release of the attached bioactive molecules (Fn, VEGF, FGF). The dressing significantly increases the viability of human saphenous vein endothelial cells (HSVECs) cultivated on a collagen-based wound model. The exogenous addition of FGF and VEGF during the coating procedure further increases the HSVECs viability. In addition, the presence of α-2 antiplasmin significantly stabilizes the fibrin mesh and prevents its cleavage by plasmin. DISCUSSION: The NF20 coating supplemented with FGF and VEGF provides a promising wound dressing for the complex treatment of DU. The incorporation of various bioactive molecules from hPL and growth factors has great potential to support the healing processes by providing appropriate stimuli in the chronic wound. Dove 2023-02-03 /pmc/articles/PMC9904224/ /pubmed/36760757 http://dx.doi.org/10.2147/IJN.S393890 Text en © 2023 Táborská et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Táborská, Johanka Blanquer, Andreu Brynda, Eduard Filová, Elena Stiborová, Lenka Jenčová, Věra Havlíčková, Kristýna Riedelová, Zuzana Riedel, Tomáš PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration |
title | PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration |
title_full | PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration |
title_fullStr | PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration |
title_full_unstemmed | PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration |
title_short | PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration |
title_sort | plcl/pcl dressings with platelet lysate and growth factors embedded in fibrin for chronic wound regeneration |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904224/ https://www.ncbi.nlm.nih.gov/pubmed/36760757 http://dx.doi.org/10.2147/IJN.S393890 |
work_keys_str_mv | AT taborskajohanka plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT blanquerandreu plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT bryndaeduard plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT filovaelena plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT stiborovalenka plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT jencovavera plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT havlickovakristyna plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT riedelovazuzana plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration AT riedeltomas plclpcldressingswithplateletlysateandgrowthfactorsembeddedinfibrinforchronicwoundregeneration |