Cargando…
Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forwa...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904282/ https://www.ncbi.nlm.nih.gov/pubmed/36599389 http://dx.doi.org/10.1016/j.neuroimage.2022.119851 |
_version_ | 1784883589960171520 |
---|---|
author | Medani, Takfarinas Garcia-Prieto, Juan Tadel, Francois Antonakakis, Marios Erdbrügger, Tim Höltershinken, Malte Mead, Wayne Schrader, Sophie Joshi, Anand Engwer, Christian Wolters, Carsten H. Mosher, John C. Leahy, Richard M. |
author_facet | Medani, Takfarinas Garcia-Prieto, Juan Tadel, Francois Antonakakis, Marios Erdbrügger, Tim Höltershinken, Malte Mead, Wayne Schrader, Sophie Joshi, Anand Engwer, Christian Wolters, Carsten H. Mosher, John C. Leahy, Richard M. |
author_sort | Medani, Takfarinas |
collection | PubMed |
description | Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today’s magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject’s MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. |
format | Online Article Text |
id | pubmed-9904282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-99042822023-02-15 Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity Medani, Takfarinas Garcia-Prieto, Juan Tadel, Francois Antonakakis, Marios Erdbrügger, Tim Höltershinken, Malte Mead, Wayne Schrader, Sophie Joshi, Anand Engwer, Christian Wolters, Carsten H. Mosher, John C. Leahy, Richard M. Neuroimage Article Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today’s magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject’s MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. 2023-02-15 2023-01-01 /pmc/articles/PMC9904282/ /pubmed/36599389 http://dx.doi.org/10.1016/j.neuroimage.2022.119851 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ) |
spellingShingle | Article Medani, Takfarinas Garcia-Prieto, Juan Tadel, Francois Antonakakis, Marios Erdbrügger, Tim Höltershinken, Malte Mead, Wayne Schrader, Sophie Joshi, Anand Engwer, Christian Wolters, Carsten H. Mosher, John C. Leahy, Richard M. Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity |
title | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity |
title_full | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity |
title_fullStr | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity |
title_full_unstemmed | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity |
title_short | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity |
title_sort | brainstorm-duneuro: an integrated and user-friendly finite element method for modeling electromagnetic brain activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904282/ https://www.ncbi.nlm.nih.gov/pubmed/36599389 http://dx.doi.org/10.1016/j.neuroimage.2022.119851 |
work_keys_str_mv | AT medanitakfarinas brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT garciaprietojuan brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT tadelfrancois brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT antonakakismarios brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT erdbruggertim brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT holtershinkenmalte brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT meadwayne brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT schradersophie brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT joshianand brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT engwerchristian brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT wolterscarstenh brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT mosherjohnc brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity AT leahyrichardm brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity |