Cargando…

Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity

Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forwa...

Descripción completa

Detalles Bibliográficos
Autores principales: Medani, Takfarinas, Garcia-Prieto, Juan, Tadel, Francois, Antonakakis, Marios, Erdbrügger, Tim, Höltershinken, Malte, Mead, Wayne, Schrader, Sophie, Joshi, Anand, Engwer, Christian, Wolters, Carsten H., Mosher, John C., Leahy, Richard M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904282/
https://www.ncbi.nlm.nih.gov/pubmed/36599389
http://dx.doi.org/10.1016/j.neuroimage.2022.119851
_version_ 1784883589960171520
author Medani, Takfarinas
Garcia-Prieto, Juan
Tadel, Francois
Antonakakis, Marios
Erdbrügger, Tim
Höltershinken, Malte
Mead, Wayne
Schrader, Sophie
Joshi, Anand
Engwer, Christian
Wolters, Carsten H.
Mosher, John C.
Leahy, Richard M.
author_facet Medani, Takfarinas
Garcia-Prieto, Juan
Tadel, Francois
Antonakakis, Marios
Erdbrügger, Tim
Höltershinken, Malte
Mead, Wayne
Schrader, Sophie
Joshi, Anand
Engwer, Christian
Wolters, Carsten H.
Mosher, John C.
Leahy, Richard M.
author_sort Medani, Takfarinas
collection PubMed
description Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today’s magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject’s MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.
format Online
Article
Text
id pubmed-9904282
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-99042822023-02-15 Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity Medani, Takfarinas Garcia-Prieto, Juan Tadel, Francois Antonakakis, Marios Erdbrügger, Tim Höltershinken, Malte Mead, Wayne Schrader, Sophie Joshi, Anand Engwer, Christian Wolters, Carsten H. Mosher, John C. Leahy, Richard M. Neuroimage Article Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today’s magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject’s MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. 2023-02-15 2023-01-01 /pmc/articles/PMC9904282/ /pubmed/36599389 http://dx.doi.org/10.1016/j.neuroimage.2022.119851 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) )
spellingShingle Article
Medani, Takfarinas
Garcia-Prieto, Juan
Tadel, Francois
Antonakakis, Marios
Erdbrügger, Tim
Höltershinken, Malte
Mead, Wayne
Schrader, Sophie
Joshi, Anand
Engwer, Christian
Wolters, Carsten H.
Mosher, John C.
Leahy, Richard M.
Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
title Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
title_full Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
title_fullStr Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
title_full_unstemmed Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
title_short Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
title_sort brainstorm-duneuro: an integrated and user-friendly finite element method for modeling electromagnetic brain activity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904282/
https://www.ncbi.nlm.nih.gov/pubmed/36599389
http://dx.doi.org/10.1016/j.neuroimage.2022.119851
work_keys_str_mv AT medanitakfarinas brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT garciaprietojuan brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT tadelfrancois brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT antonakakismarios brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT erdbruggertim brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT holtershinkenmalte brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT meadwayne brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT schradersophie brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT joshianand brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT engwerchristian brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT wolterscarstenh brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT mosherjohnc brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity
AT leahyrichardm brainstormduneuroanintegratedanduserfriendlyfiniteelementmethodformodelingelectromagneticbrainactivity