Cargando…
Approximations of algorithmic and structural complexity validate cognitive-behavioral experimental results
Being able to objectively characterize the intrinsic complexity of behavioral patterns resulting from human or animal decisions is fundamental for deconvolving cognition and designing autonomous artificial intelligence systems. Yet complexity is difficult in practice, particularly when strings are s...
Autores principales: | Zenil, Hector, Marshall, James A. R., Tegnér, Jesper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904762/ https://www.ncbi.nlm.nih.gov/pubmed/36761393 http://dx.doi.org/10.3389/fncom.2022.956074 |
Ejemplares similares
-
Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations †
por: Zenil, Hector, et al.
Publicado: (2018) -
A Review of Graph and Network Complexity from an Algorithmic Information Perspective
por: Zenil, Hector, et al.
Publicado: (2018) -
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity
por: Zenil, Hector, et al.
Publicado: (2018) -
Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
por: Hernández-Orozco, Santiago, et al.
Publicado: (2021)