Cargando…

Dealing with disruptions in railway track inspection using risk-based machine learning

Unplanned track inspections can be a direct consequence of any disruption to the operation of on-board track geometry monitoring activities. A novel response strategy to enhance the value of the information for supplementary track measurements is thus established to construct a data generation model...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaewunruen, Sakdirat, Osman, Mohd Haniff
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905508/
https://www.ncbi.nlm.nih.gov/pubmed/36750640
http://dx.doi.org/10.1038/s41598-023-28866-9
Descripción
Sumario:Unplanned track inspections can be a direct consequence of any disruption to the operation of on-board track geometry monitoring activities. A novel response strategy to enhance the value of the information for supplementary track measurements is thus established to construct a data generation model. In this model, artificial (synthetic) data is assigned on each measurement point along the affected track segment over a short period of time. To effectively generate artificial track measurement data, this study proposes a NARX (nonlinear autoregressive with exogenous variables) model, which incorporates short-range memory dependencies in the dependent variable and integrates interdependent effects from external factors. Nonlinearities in the proposed model have been determined using an artificial neural network that allowed fast computation of a mapping function in line with the needs of effective disruption management. The risk of over fitting the data generation model, which reflected its generalisation ability, has been effectively managed through risk aversion concept. For the model evaluation, the deviation of track longitudinal level has been taken as a case study, predicted using its degradation rate and track alignment and gauge as exogenous variables. Simulation results on two datasets that are statistically different showed that the data generation model for disrupted track measurements is reliable, accurate, and easy-to-use. This novel model is an essential breakthrough in railway track integrity prediction and resilient operation management.