Cargando…
Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts fr...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905560/ https://www.ncbi.nlm.nih.gov/pubmed/36750564 http://dx.doi.org/10.1038/s41467-023-36306-5 |
_version_ | 1784883823811493888 |
---|---|
author | Khunsriraksakul, Chachrit Li, Qinmengge Markus, Havell Patrick, Matthew T. Sauteraud, Renan McGuire, Daniel Wang, Xingyan Wang, Chen Wang, Lida Chen, Siyuan Shenoy, Ganesh Li, Bingshan Zhong, Xue Olsen, Nancy J. Carrel, Laura Tsoi, Lam C. Jiang, Bibo Liu, Dajiang J. |
author_facet | Khunsriraksakul, Chachrit Li, Qinmengge Markus, Havell Patrick, Matthew T. Sauteraud, Renan McGuire, Daniel Wang, Xingyan Wang, Chen Wang, Lida Chen, Siyuan Shenoy, Ganesh Li, Bingshan Zhong, Xue Olsen, Nancy J. Carrel, Laura Tsoi, Lam C. Jiang, Bibo Liu, Dajiang J. |
author_sort | Khunsriraksakul, Chachrit |
collection | PubMed |
description | Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks. |
format | Online Article Text |
id | pubmed-9905560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99055602023-02-08 Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus Khunsriraksakul, Chachrit Li, Qinmengge Markus, Havell Patrick, Matthew T. Sauteraud, Renan McGuire, Daniel Wang, Xingyan Wang, Chen Wang, Lida Chen, Siyuan Shenoy, Ganesh Li, Bingshan Zhong, Xue Olsen, Nancy J. Carrel, Laura Tsoi, Lam C. Jiang, Bibo Liu, Dajiang J. Nat Commun Article Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks. Nature Publishing Group UK 2023-02-07 /pmc/articles/PMC9905560/ /pubmed/36750564 http://dx.doi.org/10.1038/s41467-023-36306-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Khunsriraksakul, Chachrit Li, Qinmengge Markus, Havell Patrick, Matthew T. Sauteraud, Renan McGuire, Daniel Wang, Xingyan Wang, Chen Wang, Lida Chen, Siyuan Shenoy, Ganesh Li, Bingshan Zhong, Xue Olsen, Nancy J. Carrel, Laura Tsoi, Lam C. Jiang, Bibo Liu, Dajiang J. Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
title | Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
title_full | Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
title_fullStr | Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
title_full_unstemmed | Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
title_short | Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
title_sort | multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905560/ https://www.ncbi.nlm.nih.gov/pubmed/36750564 http://dx.doi.org/10.1038/s41467-023-36306-5 |
work_keys_str_mv | AT khunsriraksakulchachrit multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT liqinmengge multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT markushavell multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT patrickmatthewt multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT sauteraudrenan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT mcguiredaniel multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT wangxingyan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT wangchen multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT wanglida multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT chensiyuan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT shenoyganesh multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT libingshan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT zhongxue multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT olsennancyj multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT carrellaura multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT tsoilamc multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT jiangbibo multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus AT liudajiangj multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus |