Cargando…

Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus

Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Khunsriraksakul, Chachrit, Li, Qinmengge, Markus, Havell, Patrick, Matthew T., Sauteraud, Renan, McGuire, Daniel, Wang, Xingyan, Wang, Chen, Wang, Lida, Chen, Siyuan, Shenoy, Ganesh, Li, Bingshan, Zhong, Xue, Olsen, Nancy J., Carrel, Laura, Tsoi, Lam C., Jiang, Bibo, Liu, Dajiang J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905560/
https://www.ncbi.nlm.nih.gov/pubmed/36750564
http://dx.doi.org/10.1038/s41467-023-36306-5
_version_ 1784883823811493888
author Khunsriraksakul, Chachrit
Li, Qinmengge
Markus, Havell
Patrick, Matthew T.
Sauteraud, Renan
McGuire, Daniel
Wang, Xingyan
Wang, Chen
Wang, Lida
Chen, Siyuan
Shenoy, Ganesh
Li, Bingshan
Zhong, Xue
Olsen, Nancy J.
Carrel, Laura
Tsoi, Lam C.
Jiang, Bibo
Liu, Dajiang J.
author_facet Khunsriraksakul, Chachrit
Li, Qinmengge
Markus, Havell
Patrick, Matthew T.
Sauteraud, Renan
McGuire, Daniel
Wang, Xingyan
Wang, Chen
Wang, Lida
Chen, Siyuan
Shenoy, Ganesh
Li, Bingshan
Zhong, Xue
Olsen, Nancy J.
Carrel, Laura
Tsoi, Lam C.
Jiang, Bibo
Liu, Dajiang J.
author_sort Khunsriraksakul, Chachrit
collection PubMed
description Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.
format Online
Article
Text
id pubmed-9905560
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99055602023-02-08 Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus Khunsriraksakul, Chachrit Li, Qinmengge Markus, Havell Patrick, Matthew T. Sauteraud, Renan McGuire, Daniel Wang, Xingyan Wang, Chen Wang, Lida Chen, Siyuan Shenoy, Ganesh Li, Bingshan Zhong, Xue Olsen, Nancy J. Carrel, Laura Tsoi, Lam C. Jiang, Bibo Liu, Dajiang J. Nat Commun Article Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks. Nature Publishing Group UK 2023-02-07 /pmc/articles/PMC9905560/ /pubmed/36750564 http://dx.doi.org/10.1038/s41467-023-36306-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Khunsriraksakul, Chachrit
Li, Qinmengge
Markus, Havell
Patrick, Matthew T.
Sauteraud, Renan
McGuire, Daniel
Wang, Xingyan
Wang, Chen
Wang, Lida
Chen, Siyuan
Shenoy, Ganesh
Li, Bingshan
Zhong, Xue
Olsen, Nancy J.
Carrel, Laura
Tsoi, Lam C.
Jiang, Bibo
Liu, Dajiang J.
Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
title Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
title_full Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
title_fullStr Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
title_full_unstemmed Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
title_short Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
title_sort multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905560/
https://www.ncbi.nlm.nih.gov/pubmed/36750564
http://dx.doi.org/10.1038/s41467-023-36306-5
work_keys_str_mv AT khunsriraksakulchachrit multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT liqinmengge multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT markushavell multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT patrickmatthewt multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT sauteraudrenan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT mcguiredaniel multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT wangxingyan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT wangchen multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT wanglida multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT chensiyuan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT shenoyganesh multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT libingshan multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT zhongxue multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT olsennancyj multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT carrellaura multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT tsoilamc multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT jiangbibo multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus
AT liudajiangj multiancestryandmultitraitgenomewideassociationmetaanalysesinformclinicalriskpredictionforsystemiclupuserythematosus