Cargando…
Calibration of spectra in presence of non-stationary background using unsupervised physics-informed deep learning
Calibration is a key part of the development of a diagnostic. Standard approaches require the setting up of dedicated experiments under controlled conditions in order to find the calibration function that allows one to evaluate the desired information from the raw measurements. Sometimes, such contr...
Autores principales: | Puleio, Alessandro, Rossi, Riccardo, Gaudio, Pasqualino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905576/ https://www.ncbi.nlm.nih.gov/pubmed/36750596 http://dx.doi.org/10.1038/s41598-023-29371-9 |
Ejemplares similares
-
A Weighted-LSM Method to Improve Classification and Concentration Evaluation from Laser-Induced Fluorescence Spectra
por: Gabbarini, Valentina, et al.
Publicado: (2022) -
Adaptive Quasi-Unsupervised Detection of Smoke Plume by LiDAR
por: Rossi, Riccardo, et al.
Publicado: (2020) -
Information spectra and optimal background states for dynamical networks
por: Menolascino, Delsin, et al.
Publicado: (2018) -
Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
por: Seydoux, Léonard, et al.
Publicado: (2020) -
An unsupervised machine learning method for assessing quality of tandem mass spectra
por: Lin, Wenjun, et al.
Publicado: (2012)