Cargando…
How to train a self-driving vehicle: On the added value (or lack thereof) of curriculum learning and replay buffers
Learning from only real-world collected data can be unrealistic and time consuming in many scenario. One alternative is to use synthetic data as learning environments to learn rare situations and replay buffers to speed up the learning. In this work, we examine the hypothesis of how the creation of...
Autores principales: | Mahmoud, Sara, Billing, Erik, Svensson, Henrik, Thill, Serge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905678/ https://www.ncbi.nlm.nih.gov/pubmed/36762255 http://dx.doi.org/10.3389/frai.2023.1098982 |
Ejemplares similares
-
Self-aware cycle curriculum learning for multiple-choice reading comprehension
por: Chen, Haihong, et al.
Publicado: (2022) -
AdCOFE: Advanced Contextual Feature Extraction in conversations for emotion classification
por: Bhat, Vaibhav, et al.
Publicado: (2021) -
Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning
por: Jung, Minjae, et al.
Publicado: (2022) -
How Personality and Communication Patterns Affect Online ad-hoc Teams Under Pressure
por: Vinella, Federica Lucia, et al.
Publicado: (2022) -
A review on AI Safety in highly automated driving
por: Wäschle, Moritz, et al.
Publicado: (2022)