Cargando…
Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2
Pandemic coronavirus causes respiratory, enteric and sometimes neurological diseases. Proteome data of individual coronavirus strains were already reported. Here we investigated of SARS-CoV-2 ssRNA and protein of spike, envelope and membrane to determine stress adaptation profile. Thermodynamic prop...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905751/ https://www.ncbi.nlm.nih.gov/pubmed/36777001 http://dx.doi.org/10.22099/mbrc.2022.44594.1777 |
_version_ | 1784883867572764672 |
---|---|
author | Sarkar, Aniket Panja, Anindya Sundar |
author_facet | Sarkar, Aniket Panja, Anindya Sundar |
author_sort | Sarkar, Aniket |
collection | PubMed |
description | Pandemic coronavirus causes respiratory, enteric and sometimes neurological diseases. Proteome data of individual coronavirus strains were already reported. Here we investigated of SARS-CoV-2 ssRNA and protein of spike, envelope and membrane to determine stress adaptation profile. Thermodynamic properties, Physicochemical behaviour and, amino acid composition along with their RMSD value was analysed. Thermodynamic index of SARS-CoV2 spike, envelope and membrane ssRNA is unstable in higher temperature. Presence of higher proportion of polar with positive and negative charged amino acid residues into spike (S), envelope (E) and membrane (M) protein indicate the lower stress adaptability pattern. Our study represented several unstable pockets into S, E and M proteins of SARS-CoV-2 against different abiotic stresses, specifically higher in spike protein. Contact with heat through solvent may denature the architectural network of SARS-CoV-2 spike, envelope and membrane ssRNA and structural protein. The stress instability index of SARS-CoV-2 and the interactome profile of its transmembrane proteins may help to reveal novel factors for inhibiting SARS-CoV-2 growth. |
format | Online Article Text |
id | pubmed-9905751 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Shiraz University |
record_format | MEDLINE/PubMed |
spelling | pubmed-99057512023-02-09 Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 Sarkar, Aniket Panja, Anindya Sundar Mol Biol Res Commun Original Article Pandemic coronavirus causes respiratory, enteric and sometimes neurological diseases. Proteome data of individual coronavirus strains were already reported. Here we investigated of SARS-CoV-2 ssRNA and protein of spike, envelope and membrane to determine stress adaptation profile. Thermodynamic properties, Physicochemical behaviour and, amino acid composition along with their RMSD value was analysed. Thermodynamic index of SARS-CoV2 spike, envelope and membrane ssRNA is unstable in higher temperature. Presence of higher proportion of polar with positive and negative charged amino acid residues into spike (S), envelope (E) and membrane (M) protein indicate the lower stress adaptability pattern. Our study represented several unstable pockets into S, E and M proteins of SARS-CoV-2 against different abiotic stresses, specifically higher in spike protein. Contact with heat through solvent may denature the architectural network of SARS-CoV-2 spike, envelope and membrane ssRNA and structural protein. The stress instability index of SARS-CoV-2 and the interactome profile of its transmembrane proteins may help to reveal novel factors for inhibiting SARS-CoV-2 growth. Shiraz University 2022 /pmc/articles/PMC9905751/ /pubmed/36777001 http://dx.doi.org/10.22099/mbrc.2022.44594.1777 Text en https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Sarkar, Aniket Panja, Anindya Sundar Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 |
title | Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 |
title_full | Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 |
title_fullStr | Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 |
title_full_unstemmed | Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 |
title_short | Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2 |
title_sort | stress adaptation signature into the functional units of spike, envelope, membrane protein and ssrna of sars-cov-2 |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905751/ https://www.ncbi.nlm.nih.gov/pubmed/36777001 http://dx.doi.org/10.22099/mbrc.2022.44594.1777 |
work_keys_str_mv | AT sarkaraniket stressadaptationsignatureintothefunctionalunitsofspikeenvelopemembraneproteinandssrnaofsarscov2 AT panjaanindyasundar stressadaptationsignatureintothefunctionalunitsofspikeenvelopemembraneproteinandssrnaofsarscov2 |