Cargando…
Conditional autoencoder pre-training and optimization algorithms for personalized care of hemophiliac patients
This paper presents the use of deep conditional autoencoder to predict the effect of treatments for patients suffering from hemophiliac disorders. Conditional autoencoder is a semi-supervised model that learns an abstract representation of the data and provides conditional reconstruction capabilitie...
Autores principales: | Buche, Cédric, Lasson, François, Kerdelo, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905812/ https://www.ncbi.nlm.nih.gov/pubmed/36762254 http://dx.doi.org/10.3389/frai.2023.1048010 |
Ejemplares similares
-
Bankruptcy prediction using ensemble of autoencoders optimized by genetic algorithm
por: Kanász, Róbert, et al.
Publicado: (2023) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022) -
Integrating collective know-how for multicriteria decision support in agrifood chains—application to cheesemaking
por: Buche, Patrice, et al.
Publicado: (2023) -
Domain Adaptation Using Convolutional Autoencoder and Gradient Boosting for Adverse Events Prediction in the Intensive Care Unit
por: Zhu, Yuanda, et al.
Publicado: (2022)