Cargando…

HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy

Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Yang, Liu, Pei‐Kang, Li, Yao, Nolan, Nicholas D, Quinn, Peter M J, Hsu, Chun‐Wei, Jenny, Laura A, Zhao, Jin, Cui, Xuan, Chang, Ya‐Ju, Wert, Katherine J, Sparrow, Janet R, Wang, Nan‐Kai, Tsang, Stephen H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906391/
https://www.ncbi.nlm.nih.gov/pubmed/36645044
http://dx.doi.org/10.15252/emmm.202216525
_version_ 1784883981413515264
author Kong, Yang
Liu, Pei‐Kang
Li, Yao
Nolan, Nicholas D
Quinn, Peter M J
Hsu, Chun‐Wei
Jenny, Laura A
Zhao, Jin
Cui, Xuan
Chang, Ya‐Ju
Wert, Katherine J
Sparrow, Janet R
Wang, Nan‐Kai
Tsang, Stephen H
author_facet Kong, Yang
Liu, Pei‐Kang
Li, Yao
Nolan, Nicholas D
Quinn, Peter M J
Hsu, Chun‐Wei
Jenny, Laura A
Zhao, Jin
Cui, Xuan
Chang, Ya‐Ju
Wert, Katherine J
Sparrow, Janet R
Wang, Nan‐Kai
Tsang, Stephen H
author_sort Kong, Yang
collection PubMed
description Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO‐related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO‐related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α‐ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO‐chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO‐related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function.
format Online
Article
Text
id pubmed-9906391
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-99063912023-02-13 HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy Kong, Yang Liu, Pei‐Kang Li, Yao Nolan, Nicholas D Quinn, Peter M J Hsu, Chun‐Wei Jenny, Laura A Zhao, Jin Cui, Xuan Chang, Ya‐Ju Wert, Katherine J Sparrow, Janet R Wang, Nan‐Kai Tsang, Stephen H EMBO Mol Med Articles Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO‐related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO‐related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α‐ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO‐chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO‐related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function. John Wiley and Sons Inc. 2023-01-16 /pmc/articles/PMC9906391/ /pubmed/36645044 http://dx.doi.org/10.15252/emmm.202216525 Text en © 2023 The Authors. Published under the terms of the CC BY 4.0 license. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Kong, Yang
Liu, Pei‐Kang
Li, Yao
Nolan, Nicholas D
Quinn, Peter M J
Hsu, Chun‐Wei
Jenny, Laura A
Zhao, Jin
Cui, Xuan
Chang, Ya‐Ju
Wert, Katherine J
Sparrow, Janet R
Wang, Nan‐Kai
Tsang, Stephen H
HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
title HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
title_full HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
title_fullStr HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
title_full_unstemmed HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
title_short HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
title_sort hif2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906391/
https://www.ncbi.nlm.nih.gov/pubmed/36645044
http://dx.doi.org/10.15252/emmm.202216525
work_keys_str_mv AT kongyang hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT liupeikang hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT liyao hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT nolannicholasd hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT quinnpetermj hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT hsuchunwei hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT jennylauraa hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT zhaojin hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT cuixuan hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT changyaju hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT wertkatherinej hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT sparrowjanetr hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT wangnankai hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy
AT tsangstephenh hif2aactivationandmitochondrialdeficitduetoironchelationcauseretinalatrophy