Cargando…
Low-cost machine learning prediction of excited state properties of iridium-centered phosphors
Prediction of the excited state properties of photoactive iridium complexes challenges ab initio methods such as time-dependent density functional theory (TDDFT) both from the perspective of accuracy and of computational cost, complicating high-throughput virtual screening (HTVS). We instead leverag...
Autores principales: | Terrones, Gianmarco G., Duan, Chenru, Nandy, Aditya, Kulik, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906783/ https://www.ncbi.nlm.nih.gov/pubmed/36794185 http://dx.doi.org/10.1039/d2sc06150c |
Ejemplares similares
-
MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks
por: Nandy, Aditya, et al.
Publicado: (2022) -
Active Learning Exploration
of Transition-Metal Complexes
to Discover Method-Insensitive and Synthetically Accessible Chromophores
por: Duan, Chenru, et al.
Publicado: (2022) -
Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
por: Duan, Chenru, et al.
Publicado: (2022) -
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
por: Janet, Jon Paul, et al.
Publicado: (2019) -
Seeing Is Believing: Experimental Spin States from
Machine Learning Model Structure Predictions
por: Taylor, Michael G., et al.
Publicado: (2020)